home *** CD-ROM | disk | FTP | other *** search
-
-
-
- DDDDLLLLAAAAEEEEDDDD9999((((3333FFFF)))) DDDDLLLLAAAAEEEEDDDD9999((((3333FFFF))))
-
-
-
- NNNNAAAAMMMMEEEE
- DLAED9 - find the roots of the secular equation, as defined by the values
- in D, Z, and RHO, between KSTART and KSTOP
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE DLAED9( K, KSTART, KSTOP, N, D, Q, LDQ, RHO, DLAMDA, W, S,
- LDS, INFO )
-
- INTEGER INFO, K, KSTART, KSTOP, LDQ, LDS, N
-
- DOUBLE PRECISION RHO
-
- DOUBLE PRECISION D( * ), DLAMDA( * ), Q( LDQ, * ), S( LDS, *
- ), W( * )
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- DLAED9 finds the roots of the secular equation, as defined by the values
- in D, Z, and RHO, between KSTART and KSTOP. It makes the appropriate
- calls to DLAED4 and then stores the new matrix of eigenvectors for use in
- calculating the next level of Z vectors.
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- K (input) INTEGER
- The number of terms in the rational function to be solved by
- DLAED4. K >= 0.
-
- KSTART (input) INTEGER
- KSTOP (input) INTEGER The updated eigenvalues Lambda(I), KSTART
- <= I <= KSTOP are to be computed. 1 <= KSTART <= KSTOP <= K.
-
- N (input) INTEGER
- The number of rows and columns in the Q matrix. N >= K (delation
- may result in N > K).
-
- D (output) DOUBLE PRECISION array, dimension (N)
- D(I) contains the updated eigenvalues for KSTART <= I <= KSTOP.
-
- Q (workspace) DOUBLE PRECISION array, dimension (LDQ,N)
-
- LDQ (input) INTEGER
- The leading dimension of the array Q. LDQ >= max( 1, N ).
-
- RHO (input) DOUBLE PRECISION
- The value of the parameter in the rank one update equation. RHO
- >= 0 required.
-
- DLAMDA (input) DOUBLE PRECISION array, dimension (K)
- The first K elements of this array contain the old roots of the
- deflated updating problem. These are the poles of the secular
- equation.
-
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- DDDDLLLLAAAAEEEEDDDD9999((((3333FFFF)))) DDDDLLLLAAAAEEEEDDDD9999((((3333FFFF))))
-
-
-
- W (input) DOUBLE PRECISION array, dimension (K)
- The first K elements of this array contain the components of the
- deflation-adjusted updating vector.
-
- S (output) DOUBLE PRECISION array, dimension (LDS, K)
- Will contain the eigenvectors of the repaired matrix which will
- be stored for subsequent Z vector calculation and multiplied by
- the previously accumulated eigenvectors to update the system.
-
- LDS (input) INTEGER
- The leading dimension of S. LDS >= max( 1, K ).
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: if INFO = 1, an eigenvalue did not converge
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-